
 

 

Abstract-We have previously published calculations which show 
that, contrary to what has been believed, despite the high 
resistivity of the skull the spatial sensitivity of magneto-
encephalography, MEG, is no better than that of electro-
encephalography, EEG. The results were based on the widely 
used Rush-Driscoll head model, where skull resistivity is 
considered to be 80 times that of the brain and the scalp. 
 Recent research indicated that the skull resistivity is only 
about 15 times that of the brain and scalp. Calculations of EEG 
sensitivity distributions with this value show that EEG has 
considerably better spatial resolution than MEG. Since clinical 
recordings are not in conflict with such a result, the conclusion 
can be considered reliable. The finding supports use of high-
resolution EEG as research and clinical tool in recording the 
electric activity of the brain. 
Keywords -  Bioelectromagnetism, electroencephalography, 
magnetoencephalography 
 
 

I. INTRODUCTION 
 
The electric activity of the brain generates both electric and 
magnetic fields, detected as electroencephalography, EEG, 
and magnetoencephalography, MEG. Both of these 
techniques are nowadays used as research and clinical tools. 
For the benefit of the brain research it is important to discuss 
about the relative merits of these techniques. In this 
discussion there exist several issues, theoretical and technical. 
One of these issues is the spatial resolution. 
 We have previously demonstrated with calculations with 
the Rush-Driscoll model that the spatial resolution of the 
axial gradiometer is an order of magnitude poorer than that of 
a bipolar EEG measurement. The spatial resolution of a 
planar gradiometer in the Rush-Driscoll model is about the 
same order as that of the bipolar EEG. [1 - 4] 
 It has recently been demonstrated with several different 
approaches that the earlier conception of the high resistivity 
of the skull is overestimated and that the correct ratio 
between the resistivity of the skull and that of the brain and 
scalp tissues is 15/1 [5]. We recalculated the most central 
results of our previous study with this resistivity ratio to 
obtain more reliable information on the relative spatial 
resolutions of the EEG and MEG. 
 

II. METHODS 
 

 To investigate the EEG and MEG detectors' ability to 
concentrate their measurement sensitivity we use the concept 
half-sensitivity volume (HSV). The HSV is the volume of the 
source region in which the magnitude of the detector's 
sensitivity is more than one half of its maximum value in the 
source region [1]. If a source is homogeneously distributed, 
the smaller the HSV is, the smaller is the region from which 
the detector's signal originates.  

In comparing the EEG and MEG detectors' merits the 
criterion has usually been either their accuracy in localizing a 
source dipole or in differentiating between two nearby 
dipoles. In a clinical measurement, however, a neurologist is 
interested in measuring the electric activity of brain tissue 
from a limited region. That is a volume source, not a discrete 
dipole. These are, of course, mathematically related concepts. 

We compared the spatial resolution of EEG and MEG 
using the concept of half-sensitivity volume (HSV). This 
concept has been described in detail elsewhere [3]. For EEG 
the HSV was calculated for bipolar and three-electrode leads 
with point electrodes as a function of electrode distance. For 
MEG the HSV was similarly calculated for a planar 
gradiometer as a function of baseline. The radii of the MEG 
coils were 10 mm and their distance from the scalp 20 mm. 
For the head we used the Rush-Driscoll model with 
concentric spheres of 80 mm, 85 mm and 92 mm radii for the 
outer surfaces of brain, skull and scalp, respectively. For the 
resistivities of these tissues, however, we used the relative 
values 1/15/1. The earlier results with relative skull 
resistivities of 1/80/1 and 1/100/1 are also given. The results 
are thus comparable with those of our earlier paper [3]. 
 

III. RESULTS 
 

 The HSVs for two and three-electrode EEG and planar 
gradiometer MEG with brain and scalp/skull resistivity ratios 
of  1/15, 1/80 and 1/100 as a function of electrode distance 
and magnetometer baseline are given in Tables I and II and 
Figure 1. It will be observed that with this new resistivity 
value for the skull (1/15) the HSV of the EEG is significantly 
smaller than that of the MEG at all values of electrode 
distance and magnetometer baseline.  

 The clinically interesting area at baseline is some 10-
20 mm, corresponding to an electrode distance of 128 or 256 
electrode High Resolution EEG systems. In this region the 
HSV of the EEG is about 20 - 45 % smaller than that of the 
planar gradiometer MEG. 
 

V. CONCLUSION 
 
 Our calculations show that, when adopting for scalp, skull 
and brain the more realistic relative resistivity values of 
1/15/1, the HSV is smaller and thus the spatial sensitivity is 
better for the EEG than for the MEG. 
 

IV. DISCUSSION 
 

 The high resistivity of the skull is the main factor 
affecting the spatial resolution of the EEG. The fact that this 
has no effect on the spatial resolution of the MEG has been 
the main reason for the belief that the MEG would provide 
better spatial resolution than the EEG. 
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TABLE I 

THE HSV OF BIPOLAR EEG LEADS WITH DIFFERENT SKULL CONDUCTIVITY RATIOS 
AND HSV OF PLANAR GRADIOMETER MEG LEADS WITH H =20 MM, R = 10 MM. HSVS 
ARE GIVEN IN [CM³] WITH (1/15) B, (1/80) B AND (1/100) B SKULL CONDUCTIVITIES. 

  

Separation Bipolar EEG 

degr mm (1/15)σb (1/80)σb (1/100)σb 

Planar MEG 

20° 32.0 4.9 8.0 8.5 5.6 
10° 16.0 2.1 2.8 3.0 3.8 

5° 8.0 1.2 1.5 1.5 3.5 
1° 1.6 0.92 1.2 1.2 3.4 

 
TABLE II 

THE HSV OF THREE-ELECTRODE EEG LEADS WITH DIFFERENT SKULL CONDUCTIVITY 
RATIOS. HSVS ARE GIVEN IN [CM³] WITH (1/15) B, (1/80) B AND (1/100) B SKULL 

CONDUCTIVITIES.. 
  

Separation Three-electrode EEG 

degr mm (1/15)σb (1/80)σb (1/100)σb 

20° 32.0 1.8 2.4 2.6 
10° 16.0 0.79 0.67 0.89 

5° 8.0 0.4 0.3 0.3 
1° 1.6 0.22 0.21 0.22 
 
 
 

 We have previously shown that even with a relative value 
of 80/1 skull resistivity, MEG and EEG have about  the same 
spatial resolution. Now the new more realistic resistivity 
value for the skull yields to a spatial resolution of the EEG 
which is apparently better than that of the MEG. 
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Fig. 1. Half-sensitivity volumes of two- and three-electrode EEG and planar gradiometer MEG as a function of electrode distance/gradiometer baseline. The 
relative resistivities in EEG are 1/15, 1/80 and 1/100 for brain and scalp/skull. The electrode distances for EEG lead systems with different numbers of leads 

are also indicated. 
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